Hardware Introduction

You have received a kit composed of 4 main pieces:

DFRduino

IO Expansion Shield

27 Pcs Sensor Set for Arduino

Pan e Tilt Kit

DFRduino

<u>DFRduino</u> Uno V3.0 from DFRobot It is a simple microcontroller board fully compatible with <u>Arduino UNO R3</u> and Arduino IDE open-source development environment. DFRduino can be used as a means for bonsai to interface hardware sensors and actuators. The open-source IDE can be <u>downloaded</u> for free.

IO Expansion Shield

Stack the **IO Expansion Shield** on top of the DFRduino:

The Added feature about IO Expasion shield is that it Extends the ports to 3Pins, convenient to plugin 3P modules. The headers also use different colors to distinguish I/O ports of different types:

- Blue for Analog I/O.
- Green for Digital I/O.

These colors match our sensor cables. This makes it really easy to figure out where to connect sensors, or to identify which side is Analog (blue) or Digital (green).

Applied to digital sensor (or digital/pwm/servo actuator)

Applied to analog sensor

27 Pcs Sensor Set

The 27 Pcs Sensor Set for Arduino contains the sensors/Actuators used in worksheets.

Digital/PWM Actuators (Use bonsai nodes: DigitalOutput, AnalogOutput)

- Relay Module V2 (DFR0017)x1
- Digital RED LED Light Module (DFR0021R)x1
- Digital White LED Light Module (DFR0021)x1
- Digital Green LED Light Module (DFR0021G)x1
- Digital Blue LED Light Module (DFR0021B)x1

Digital Sensors (Bonsai nodes: DigitalInput, InputPullUp)

- Digital Vibration Sensor (DFR0027)x1
- Digital Tilt Sensor (DFR0028)x1
- Digital Push Button (DFR0029)x1
- Capacitive Touch Sensor (DFR0030)x1
- Digital magnetic sensor (DFR0033)x1
- Digital Infrared motion sensor (SEN0018)x1
- Digital Push Button (Red)(DFR0029-R) x1
- Digital Push Button (White)(DFR0029-W) x1

Analog Sensors (Use Bonsai AnalogInput node)

- Sharp GP2Y0A21 Distance Sensor (10-80cm) (3.94-31.50") (SEN0014) x1
- Soil Moisture Sensor (SEN0114) x1
- Steam Sensor (SEN0121) x1
- Flame sensor (DFR0076)x1
- Triple Axis Accelerometer MMA7361 (DFR0143)x1
- Analog Grayscale Sensor (DFR0022)x1
- LM35 Analog Linear Temperature Sensor (DFR0023)x1
- Analog Ambient Light Sensor (DFR0026)x1
- Analog Sound Sensor (DFR0034)x1
- Analog Carbon Monoxide Sensor (MQ7) (SEN0132)x1
- Analog Voltage Divider (DFR0051)x1
- Piezo Disk Vibration Sensor (DFR0052)x1
- Analog Rotation Sensor V2 (DFR0058)x1
- Joystick Module (DFR0061)x1

Assembly of the Pan Tilt

In a Camera tracking system, the camera is fixed on a structure that moves according to the position of the tracked object the camera sees.

Follow the steps and the images below to assemble the parts.

Step 1: Stack the I/O Expansion Shield on the Arduino. Connect servo with D9 in shield. Use the bonsai example below to drive both servos (one at a time) to the **90 degree position** before assembly. You may find useful to consult the arduino part of the worksheet **Acquisition and Tracking.**

STEP 2: From the cajal kit identify the following pieces:

Step 3: Assemble the servo cross lever to the U-bracket middle using 2 long screws from the servo bag

Step 4: Assemble the second servo cross lever to the U-bracket side using 2 long screws from the second servo bag

Step 5: Assemble both servos using the small screw from the servo bag

Step 6: Test Drive The Mechatronics. Prior to adding the camera lets test if everything works as it should:

- Stack the I/O Expansion Shield on the Arduino.
- Connect the lower servo with D9 in the shield.
- Connect the upper servo with D11 in the shield
- Use the example from the worksheet to **test drive both servos from 0 to 180 degrees** and check for blockage before assembling the camera.

Step 7: Mounting the Camera. Using double sided tape, attach the camera to the servo and the pan&tilt to a base ex: a wood piece, a dish, or a jam jar lid.

Another option is using cable zip ties, but even regular tape should do the trick.

